On Fischer{frobenius Transformations and the Structure of Rectangular Block Hankel Matrices
نویسندگان
چکیده
In this paper, we develop three essential ingredients of an algebraic structure theory of nite block Hankel matrices. The development centers around a transformation of block Hankel matrices, rst introduced by Fischer and Frobenius for scalar Hankel matrices. We prove three results: First, Iohvidov's fundamental notion of the characteristic of a Hankel matrix is extended to the block matrix case and the relationship between rank and characteristic is clariied. The characteristic of block Hankel matrices involves the introduction of two new sets of invariants, the principal and residual observability and controllability indices. Second, the class of generalized Fischer{Frobenius transformations is shown to be the largest class of rank preserving transformations X 7 ! S > XT which leave the set of block Hankel matrices invariant. Finally the principal minor lemma from scalar Hankel matrix theory is extended to the block matrix case. We use this generalization in order to prove that the set of xed rank block Hankel matrices is a smooth manifold and establish some elementary topological properties.
منابع مشابه
PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES
We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.
متن کاملThe Inverses of Block Hankel and Block Toeplitz Matrices
A set of new formulae for the inverse of a block Hankel (or block Toeplitz) matrix is given. The formulae are expressed in terms of certain matrix Pad6 forms, which approximate a matrix power series associated with the block Hankel matrix. By using Frobenius-type identities between certain matrix Pad6 forms, the inversion formulae are shown to generalize the formulae of Gohberg-Heinig and, in t...
متن کاملToeplitz and Hankel matrix approximation using structured approach
structures on a model based on available prior informaAlgorithms are presented for least-squares approximation. Earlier work on these problems has primarily contion of Toeplitz and Hankel matrices from noise corsisted of using Singular Value Decomposition [4, 5, 81, rupted or ill-composed matrices, which may not have where only the rank information of the underlying sigcorrect structural or ran...
متن کاملOn the Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly
The non-split extension group $overline{G} = 5^3{^.}L(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in Ly. The group $overline{G}$ in turn has L(3,5) and $5^2{:}2.A_5$ as inertia factors. The group $5^2{:}2.A_5$ is of order 3 000 and is of index 124 in L(3,5). The aim of this paper is to compute the Fischer-Clifford matrices of $overline{G}$, which together with associated parti...
متن کاملInversion Components of Block Hankel-like Matrices
The inversion problem for square matrices having the structure of a block Hankel-like matrix is studied. Examples of such matrices in&de Hankel striped, Hankel layered, and vector Hankel matrices. It is shown that the components that both determine nonsingularity and construct the inverse of such matrices are closely related to certain matrix polynomials. These matrix polynomials are multidimen...
متن کامل